

Translations and Vectors

ACADEMY

Introduction

When you want to ask for a place, you ask the distance to the place or the direction to it???

Introduction

You need to know how much the distance to travel, but you need the direction that help you to travel.

Distance + Direction

EMA

B is the translate of A in a given direction (along (AB)) and sense (from A to B) for a given distance (AB=d(A;B)).

We can define this translation by the vector \overrightarrow{AB} (oriented segment) where:

A is the origin,
B is the extremity.

02 Definition

Vector \overrightarrow{AB}

- > Direction: (AB)
- \triangleright Sense: A \rightarrow B
- Magnitude or norm:

$$d(A; B) = AB$$

Remarks:

- > A vector cannot be expressed by a number.
- We cannot write $\overrightarrow{AB} = 2$ we write AB = 2
- \triangleright A vector can be named using small letters like \vec{u} .
- $ightharpoonup \overrightarrow{AB} \neq \overrightarrow{BA}$ (because the sense is different)

ACADEMY

Remarks:

The direction(road) of cars A and B is parallel to that of cars C and D, so they have same direction.

In the case of same direction we can determine their sense with respect to each other.

Example:

Car C has a sense opposite to car A but same as car D.

We cannot determine the sense of car E with respect to car C because they have different directions.

Different positions of two vectors:

equal vectors opposite vectors

Same direction	No	No	Yes	Yes	Yes	Yes
Same sense	No	No A	Yes	No	Yes	No
Same norm	Yes	No	Yes	Yes	No	No

Different positions of two vectors:

Equal(equipollent) vectors:

Vectors having:

- > same direction
- > Same sense
- > Same norm

Vector relation:

$$\vec{u} = \vec{v}$$

Se Smot 4CADEMY

Different positions of two vectors:

Opposite vectors:

Vectors having:

- > same direction
- Opposite sense
- > Same norm

Vector relation:

$$\vec{u} = -\vec{v}$$

Remarks:

B is the translate of A by a translation of

vector \vec{u} : $\overrightarrow{AB} = \vec{u}$

$$\overrightarrow{AI} = \overrightarrow{IB} = \frac{\overrightarrow{AB}}{2}$$

$$\overrightarrow{IA} = -\overrightarrow{IB}$$

$$\overrightarrow{IA} = -\overrightarrow{IB}$$

Remarks:

G is the centroid of the triangle ABC.

$$\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AI}$$
 ; $\overrightarrow{AI} = \frac{3}{2}\overrightarrow{AG}$

$$\overrightarrow{GI} = \frac{1}{3}\overrightarrow{AI} \quad ; \qquad \overrightarrow{AI} = 3\overrightarrow{GI}$$

$$\overrightarrow{AG} = 2\overrightarrow{GI}$$
 ; $\overrightarrow{GI} = \frac{1}{2}\overrightarrow{AG}$

Parallelogram

Application: 01

The following figure shows a regular hexagon. State 5 equal vectors.

$$\overrightarrow{AB} = \overrightarrow{ED}$$

$$\overrightarrow{BC} = \overrightarrow{FE}$$

$$\overrightarrow{CD} = \overrightarrow{AF}$$

$$\overrightarrow{FE} = \overrightarrow{BC}$$

$$\overrightarrow{OE} = \overrightarrow{BO}$$

 $\overrightarrow{AA} = \overrightarrow{0}$ Zero vector

or

null vector

O6 Chasles's rule

$$\bullet \ \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Chasles's rule

Decomposition of a vector using Chasles's rule:

$$\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$$

We can decompose the vector \overrightarrow{AB} into more than two vectors by inserting more than 1 point between the origin and the extremity following the Chasles' rule.

$$\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DE} + \overrightarrow{EB}$$

Application: 02

Simplify using Chasles' relation.

a)
$$\vec{u} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$$

$$\vec{u} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{AC} + \overrightarrow{CA} = \overrightarrow{AA} = \vec{0}$$

b)
$$\vec{v} = \overrightarrow{AB} - \overrightarrow{AC} + \overrightarrow{BC} - \overrightarrow{BA}$$

$$\vec{v} = \overrightarrow{AB} - \overrightarrow{AC} + \overrightarrow{BC} - \overrightarrow{BA} = \overrightarrow{AB} + \overrightarrow{CA} + \overrightarrow{BC} + \overrightarrow{AB}$$
$$= 2\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 2\overrightarrow{AB} + \overrightarrow{BA} = 2\overrightarrow{AB} - \overrightarrow{AB} = \overrightarrow{AB}$$

Application: 03

ABCD is a parallelogram.

Show that:
$$\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC} - \overrightarrow{MD} = \overrightarrow{0}$$

$$\overrightarrow{MA} - \overrightarrow{MB} + \overrightarrow{MC} - \overrightarrow{MD} =$$

$$\overrightarrow{MA} - (\overrightarrow{MA} + \overrightarrow{AB}) + \overrightarrow{MA} + \overrightarrow{AC} - (\overrightarrow{MA} + \overrightarrow{AD}) =$$

$$\overrightarrow{MA} - \overrightarrow{MA} - \overrightarrow{AB} + \overrightarrow{MA} + \overrightarrow{AC} - \overrightarrow{MA} - \overrightarrow{AD} =$$

$$-\overrightarrow{AB} + \overrightarrow{AC} - \overrightarrow{AD} =$$

$$\overrightarrow{BA} + \overrightarrow{AC} + \overrightarrow{DA} = \overrightarrow{BC} + \overrightarrow{DA} \quad \text{but } \overrightarrow{BC} = \overrightarrow{AD}$$

$$= \overrightarrow{AD} + \overrightarrow{DA} = \overrightarrow{AA} = \overrightarrow{0}$$

Addition of two vectors.

We can add two vectors by joining them head to tail

It doesn't matter which order we add them, we get the same result.

Addition of two vectors.

Parallelogram rule

$$\vec{u} + \vec{v} = \overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$$

Parallelogram rule:

 $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$ where D is the fourth vertex of the parallelogram ABDC.

Conversely:

If $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$ then, ABDC is a parallelogram.

Subtraction of two vectors.

First find $-\vec{v}$ and then add it to \vec{u} (head to tail) $\vec{u} - \vec{v} \neq \vec{v} - \vec{u}$

Subtraction of two vectors.

$$\vec{u} - \vec{v} = \overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{CA} = \overrightarrow{CA} + \overrightarrow{AB} = \overrightarrow{CB}$$

Vector and system

$$A(x_A; y_A)$$
 and $B(x_B; y_B)$.

$$\overrightarrow{AB} \begin{vmatrix} x_{\overrightarrow{AB}} = x_B - x_A \\ y_{\overrightarrow{AB}} = y_B - y_A \end{vmatrix}$$

Example:

$$A(-3;3)$$
 and $B(1;-1)$

$$\overrightarrow{AB} \begin{vmatrix} x_{\overrightarrow{AB}} = x_B - x_A = 1 - (-3) = 4 \\ y_{\overrightarrow{AB}} = y_B - y_A = -1 - 3 = -4 \end{vmatrix}$$

So $\overrightarrow{AB}(4;-4)$

